A corrected pseudo-score approach for additive hazards model with longitudinal covariates measured with error.

نویسندگان

  • Xiao Song
  • Yijian Huang
چکیده

In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, about which little research has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cure Rate Model With Mismeasured Covariates Under Transformation

Cure rate models explicitly account for the survival fraction in failure time data. When the covariates are measured with errors, naively treating mismeasured covariates as error-free would cause estimation bias and thus lead to incorrect inference. Under the proportional hazards cure model, we propose a corrected score approach as well as its generalization, and implement a transformation on t...

متن کامل

Semiparametric approaches for joint modeling of longitudinal and survival data with time-varying coefficients.

We study joint modeling of survival and longitudinal data. There are two regression models of interest. The primary model is for survival outcomes, which are assumed to follow a time-varying coefficient proportional hazards model. The second model is for longitudinal data, which are assumed to follow a random effects model. Based on the trajectory of a subject's longitudinal data, some covariat...

متن کامل

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

An exact corrected log-likelihood function for Cox’s proportional hazards model under measurement error and some extensions

This paper studies Cox‘s proportional hazards model under covariate measurement error. Nakamura‘s (1990) methodology of corrected log-likelihood will be applied to the so called Breslow likelihood, which is, in the absence of measurement error, equivalent to partial likelihood. For a general error model with possibly heteroscedastic and non-normal additive measurement error, corrected estimator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lifetime data analysis

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2006